Bone Regeneration of Rat Tibial Defect by Zinc-Tricalcium Phosphate (Zn-TCP) Synthesized from Porous Foraminifera Carbonate Macrospheres
نویسندگان
چکیده
Foraminifera carbonate exoskeleton was hydrothermally converted to biocompatible and biodegradable zinc-tricalcium phosphate (Zn-TCP) as an alternative biomimetic material for bone fracture repair. Zn-TCP samples implanted in a rat tibial defect model for eight weeks were compared with unfilled defect and beta-tricalcium phosphate showing accelerated bone regeneration compared with the control groups, with statistically significant bone mineral density and bone mineral content growth. CT images of the defect showed restoration of cancellous bone in Zn-TCP and only minimal growth in control group. Histological slices reveal bone in-growth within the pores and porous chamber of the material detailing good bone-material integration with the presence of blood vessels. These results exhibit the future potential of biomimetic Zn-TCP as bone grafts for bone fracture repair.
منابع مشابه
Bone regeneration of calvarial defect using marine calcareous-derived beta-tricalcium phosphate macrospheres
The aim of this study was to examine the bone regeneration properties of beta-tricalcium phosphate hydrothermally converted from foraminifera carbonate exoskeleton in the repair of rat calvarial defect. These natural materials possess unique interconnected porous network with uniform pore size distribution, which can be potentially advantageous. In total, 20 adult male Wistar rats received full...
متن کاملComparative Study of Bone Repair Using Porous Hydroxyapatite/ β-Tricalcium Phosphate and Xenograft Scaffold in Rabbits with Tibia Defect
Background: Bone tissue engineering requires materials that are biocompatible, mechanically suited for bone function, integrated with the host skeleton, and support osteoinduction of the implanted cells for new bone formation. The aim of this study was to compare the osteogenic potential of xenograft with hydroxyapatite/β- tricalcium phosphate (HA/β-TCP) scaffold. Methods: New Zealand rabbits (...
متن کاملAcidic peptide hydrogel scaffolds enhance calcium phosphate mineral turnover into bone tissue.
Designed peptides may generate molecular scaffolds in the form of hydrogels to support tissue regeneration. We studied the effect of hydrogels comprising β-sheet-forming peptides rich in aspartic amino acids and of tricalcium phosphate (β-TCP)-loaded hydrogels on calcium adsorption and cell culture in vitro, and on bone regeneration in vivo. The hydrogels were found to act as efficient depots f...
متن کاملEffect of platelet rich fibrin and beta tricalcium phosphate on bone healing. A histological study in pigs.
PURPOSE To investigate the effect of platelet rich fibrin (PRF) and beta tricalcium phosphate (β-TCP), alone or in combination, on bone regeneration in pig tibial defects. METHODS Four standardized defects were prepared in both tibias of three adult male pigs. The first defect was left unfilled as a control; the others were grafted with either PRF, β-TCP or PRF mixed with β-TCP. All animals w...
متن کاملBone Regeneration Using a Mixture of Silicon-Substituted Coral HA and β-TCP in a Rat Calvarial Bone Defect Model
The demand of bone graft materials has been increasing. Among various origins of bone graft materials, natural coral composed of up to 99% calcium carbonate was chosen and converted into hydroxyapatite (HA); silicon was then substituted into the HA. Then, the Si-HA was mixed with β-tricalcium phosphate (TCP) in the ratios 100:0 (S100T0), 70:30 (S70T30), 60:40 (S60T40), and 50:50 (S50T50). The m...
متن کامل